Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(20): 4949-4959, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329467

RESUMO

Fluorescent turn-on probes have been extensively used in disease diagnosis and research on pathological disease mechanisms because of their low background interference. Hydrogen peroxide (H2O2) plays a vital role in regulating various cellular functions. In the current study, a fluorescent probe, HCyB, based on hemicyanine and arylboronate structures, was designed to detect H2O2. HCyB reacted with H2O2 and exhibited a good linear relationship for H2O2 concentrations ranging from 15 to 50 µM and good selectivity over other species. The fluorescent detection limit was 76 nM. Moreover, HCyB exhibited less toxicity and mitochondrial-targeting abilities. HCyB was successfully used to monitor exogenous or endogenous H2O2 in mouse macrophage RAW 264.7, human skin fibroblast WS1, breast cancer cell MDA-MB-231, and human leukemia monocytic THP1 cells.


Assuntos
Corantes Fluorescentes , Peróxido de Hidrogênio , Animais , Camundongos , Humanos , Corantes Fluorescentes/química , Peróxido de Hidrogênio/química , Diagnóstico por Imagem , Mitocôndrias/química , Células HeLa
2.
Nanotechnology ; 34(16)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36657162

RESUMO

Staphylococcus aureus (S. aureus)forms biofilm that causes periprosthetic joint infections and osteomyelitis (OM) which are the intractable health problems in clinics. The silver-containing nanoparticles (AgNPs) are antibacterial nanomaterials with less cytotoxicity than the classic Ag compounds. Likewise, gold nanoparticles (AuNPs) have also been demonstrated as excellent nanomaterials for medical applications. Previous studies have showed that both AgNPs and AuNPs have anti-microbial or anti-inflammatory properties. We have developed a novel green chemistry that could generate the AuAg nanocomposites, through the reduction of tannic acid (TNA). The bioactivity of the nanocomposites was investigated inS. aureusbiofilm-exposed human osteoblast cells (hFOB1.19). The current synthesis method is a simple, low-cost, eco-friendly, and green chemistry approach. Our results showed that the AuAg nanocomposites were biocompatible with low cell toxicity, and did not induce cell apoptosis nor necrosis in hFOB1.19 cells. Moreover, AuAg nanocomposites could effectively inhibited the accumulation of reactive oxygen species (ROS) in mitochondria and in rest of cellular compartments after exposing to bacterial biofilm (by reducing 0.78, 0.77-fold in the cell and mitochondria, respectively). AuAg nanocomposites also suppressed ROS-triggered inflammatory protein expression via MAPKs and Akt pathways. The current data suggest that AuAg nanocomposites have the potential to be a good therapeutic agent in treating inflammation in bacteria-infected bone diseases.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Humanos , Ouro/farmacologia , Nanopartículas Metálicas/química , Staphylococcus aureus , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Nanocompostos/química , Biofilmes , Inflamação/tratamento farmacológico , Testes de Sensibilidade Microbiana
3.
Drug Deliv Transl Res ; 13(5): 1305-1321, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36258159

RESUMO

Hydrogen peroxide (H2O2) has always been a topic of great interests attributed to its vital role in biological process. H2O2 is known as a major reactive oxygen species (ROS) which is involve in numerous physiological processes such as cell proliferation, signal transduction, differentiation, and even pathogenesis. A plenty of diseases development such as chronic disease, inflammatory disease, and organ dysfunction are found to be relevant to abnormality of H2O2 production. Thus, imminent and feasible strategies to modulate and detect H2O2 level in vitro and in vivo have gained great importance. To date, the boronate-based chemical structure probes have been widely used to address the problems from the above aspects because of the rearranged chemical bonding which can detect and quantify ROS including hydrogen peroxide (H2O2) and peroxynitrite (ONOO-). This present article discusses boronate-based probes based on the chemical structure difference as well as reactivities to H2O2 and ONOO-. In this review, we also focus on the application of boronate-based probes in the field of cell imaging, prodrugs nanoplatform, nanomedicines, and electrochemical biosensors for disease diagnosis and treatment. In a nutshell, we outline the recent application of boronate-based probes and represent the prospective potentiality in biomedical domain in the future.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Peróxido de Hidrogênio , Corantes Fluorescentes/química , Espécies Reativas de Oxigênio , Nanomedicina , Estudos Prospectivos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...